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Abstract

Solar flares, especially C, M, and X class, pose significant risks
to satellite operations, communication systems, and power
grids. We present a novel approach for predicting extreme
solar flares using HMI intensitygrams and magnetograms. By
detecting sunspots from intensitygrams and extracting mag-
netic field patches from magnetograms, we train a Residual
Network (ResNet) to classify extreme class flares. Our model
demonstrates high accuracy, offering a robust tool for predict-
ing extreme solar flares and improving space weather forecast-
ing. Additionally, we show that HMI magnetograms provide
more useful data for deep learning compared to other SDO
AIA images by better capturing features critical for predicting
flare magnitudes. This study underscores the importance of
identifying magnetic fields in solar flare prediction, marking
a significant advancement in solar activity prediction with
practical implications for mitigating space weather impacts.

1 Introduction
Solar flares are intense bursts of radiation caused by the
release of magnetic energy associated with sunspots. These
events can significantly disrupt satellite communications, nav-
igation systems, and power grids on Earth (Oceanic and Ad-
ministration 2024; Schwenn 2006; Rao et al. 2009; Filjar
and Kos 2006). The severe consequences of solar flares, es-
pecially extreme C, M, and X class events, underscore the
importance of accurate prediction to protect infrastructure
and mitigate their impacts (Pandey et al. 2023). Additionally,
solar flares pose risks to space weather, affecting technologi-
cal systems, astronauts, and high-altitude flights (Schwenn
2006; Rao et al. 2009). Effective prediction allows for timely
warnings and protective measures, such as adjusting satel-
lite orbits and safeguarding power grids, thereby minimizing
potential damage and ensuring the continued operation of
critical services (Filjar and Kos 2006).

The need for accurate and timely space weather forecasts
is growing with our increasing reliance on satellite technol-
ogy and high-altitude aviation. Solar activity, including flares
and coronal mass ejections, can influence the Earth’s mag-
netosphere and ionosphere, leading to geomagnetic storms
that affect satellite operations, GPS accuracy, and ground-
based technologies (Schwenn 2006; Rao et al. 2009). Re-
cent advancements in solar observations from the Solar Dy-

*Corresponding author. E-Mail: sheen@korea.kr

namics Observatory (SDO) have provided high-resolution
data, particularly from the Helioseismic and Magnetic Im-
ager (HMI) (He et al. 2016). HMI captures intensitygrams,
detailing sunspots, and magnetograms, mapping the Sun’s
magnetic field. These datasets are crucial for understanding
the magnetic complexity leading to solar flares (Oceanic and
Administration 2024; Schwenn 2006; Rao et al. 2009).

In this study, we propose a novel approach to predict ex-
treme solar conditions, specifically C, M, and X class so-
lar flares, by leveraging HMI intensitygrams (HMII) and
magnetograms (HMIB). Our methodology involves detecting
sunspots from intensitygrams and segmenting corresponding
magnetic field patches from magnetograms. These patches
are then used to train a Residual Network (ResNet) (He et al.
2016), a deep learning model known for its effectiveness
in image classification. We focus on a binary classification
task by grouping Quiet, A, and B class events together and
C, M, and X class events together to predict extreme flare
occurrences. This approach emphasizes the importance of
magnetic field analysis for accurate solar flare prediction.

2 Related Works
In recent years, solar flare prediction has significantly ad-
vanced with the application of machine learning and deep
learning techniques, leveraging data from the Solar Dynam-
ics Observatory (SDO) (NASA 2024), particularly the Helio-
seismic and Magnetic Imager (HMI). Various studies have
explored the utility of HMI data for predicting solar flares.

Bobra and Couvidat used SHARP vector magnetic field
data from HMI to calculate 25 physical parameters, including
total flux and proxies for helicity and energy, training a ma-
chine learning algorithm to predict solar flares based on these
parameters (Bobra et al. 2014). Nishizuka et al. developed the
Deep Flare Net (DeFN), employing deep learning for opera-
tional solar flare prediction using 79 physics-based features
extracted from HMI NRT data (Nishizuka et al. 2018). Addi-
tionally, Li et al. focused on enhancing the interpretability of
predictions using attention mechanisms within deep neural
networks (Pandey et al. 2023).

These approaches often rely on a broad range of features
extracted from HMI data, combining both magnetograms
and intensitygrams. Bobra and Couvidat’s method empha-
sizes physical parameters derived from SHARP data, while
Nishizuka et al.’s DeFN integrates a large number of physics-
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Figure 1: The two-phase process for extreme solar flare prediction. Phase 1 involves training a deep neural network (ResNet)
with HMI magnetogram (HMIB) data to classify extreme and non-extreme events. Phase 2 includes detecting sunspots on HMI
intensitygram (HMII) images, extracting corresponding magnetic field patches from HMIB, and using the trained model to
predict extreme solar flare occurrences.

based features. Li et al.’s approach is distinct in its use of at-
tention mechanisms to improve interpretability, allowing for
better understanding of the decision-making process within
the neural network.

Our study is different because it specifically targets the
prediction of extreme C, M, and X class solar flares using
a more focused approach based on magnetic field patches.
Unlike previous methods that use a wide range of image, we
concentrate on detecting sunspots from intensitygrams and
segmenting the corresponding magnetic field patches from
magnetograms. These patches are then used to train and pre-
dict a Residual Network (ResNet) (He et al. 2016), a deep
learning model known for its effectiveness in image classifi-
cation. By focusing on sunspot detection and magnetic field
patch extraction, our method simplifies the feature selection
process, potentially reducing the complexity and computa-
tional load compared to models that handle a broader set of
features.

3 Methodology
Our approach involves a two-step process as shown in Fig-
ure 1: training a Residual Network (He et al. 2016) on the

SDO dataset (NASA 2024) to predict solar flare occurrences
and using computer vision techniques to detect sunspots on
HMI intensitygrams and segment magnetic field patches from
HMI magnetograms. These patches are then used with the
trained model to predict extreme flare occurrences.

3.1 Training Deep Neural Networks with
Magnetogram

We utilized the ResNet50 architecture (He et al. 2016) for
training on HMI magnetogram patch images to predict ex-
treme solar flares. Magnetogram patch images were sourced
from the Solar Dynamics Observatory (SDO) and resized
to 256 × 256 pixels. The images were annotated with flare
classifications based on their intensity levels, grouped into
two categories: Quiet, A, and B class events as QA, and C,
M, and X class events as MX. This binary classification aids
in predicting extreme flare occurrences more effectively. The
ResNet50 model, with weights pre-trained on the ImageNet
dataset (Deng et al. 2009), was used. Final Fc layer consists
of 512 neurons and ReLU activation, and an output layer is
with a softmax activation function to classify images into QA
or MX.



Figure 2: The process of detecting sunspots using HMI intensitygrams. From left to right: the original HMI intensitygram
(HMII), the binarized HMII, detected sunspots on the HMII, and the corresponding sunspot detection mapped onto the HMI
magnetogram (HMIB).

3.2 Sunspot Detection for Patch Extraction
Our methodology for detecting sunspots using HMI intensi-
tygrams involves key steps as shown in Figure 2. We start
with real-time HMI intensitygram images, convert them to
RGB color space, and apply a noise-canceling filter (Buades,
Coll, and Morel 2005). The denoised images are then bi-
narized using adaptive thresholding (Gonzalez and Woods
2006) to distinguish sunspots from the background. Contours
on the binary image (Marr 1980) detect sunspots, which are
filtered by location within the solar disk. Close bounding
rectangles are merged. Using detected sunspots, we extract
256x256 patches from HMI magnetogram images centered
on the sunspot locations. These patches are fed into a trained
ResNet to predict extreme solar flare occurrences.

4 Results
4.1 Experimental Setting
We used a ResNet-50 model (He et al. 2016) pretrained
on the ImageNet dataset (Deng et al. 2009) to train our so-
lar flare prediction model. The training was conducted us-
ing the SDOBenchmark dataset (Bolzern and Aerni 2024),
which consists of 256x256 pixel images. The model was
trained for 20 epochs with a batch size of 32. The Adam
optimizer (Kingma and Ba 2014) was employed with a learn-
ing rate of 0.0001. The experiments were performed on an
Nvidia RTX 4080 GPU.

4.2 Training Results of Deep Neural Networks
The training results of our deep neural networks demonstrate
that using HMI magnetogram (HMIB) patches for predict-
ing extreme solar flares yields higher accuracy compared
to other satellite image datasets. As shown in Figure 3, the
test accuracy achieved with HMIB images is 0.755, signifi-
cantly higher than the accuracies obtained with various AIA
datasets, such as AIA-131 (0.713), AIA-171 (0.710), and
AIA-335 (0.712). This underscores the importance of mag-
netic field data captured in HMIB for accurate solar flare
prediction.

Figure 3: Comparison of test accuracy for different satellite
image datasets using the SDOBenchmark dataset (Bolzern
and Aerni 2024). The model used is ResNet-50 (He et al.
2016) pre-trained on ImageNet (Deng et al. 2009) for predict-
ing two flare classes, QA and MX.

4.3 Prediction Results
Our model demonstrated ability in predicting MX (C, M, and
X) class solar flares using HMI magnetograms and intensi-
tygrams. Figure 4 shows the final prediction result, with the
left panel showing the HMI magnetogram (HMIB) where
the predicted flare region is highlighted, and the right panel
displaying the corresponding AIA-131 image that confirms
the flare occurrence.

5 Discussion
Our study highlights the potential of using HMI magne-
tograms and intensitygrams for the prediction of extreme
solar flares. However, there are several limitations that need
to be addressed in future research. One significant limitation
is the overall scarcity of magnetogram training data, which
constrains the robustness and generalizability of our model.
To mitigate this, we propose the creation of a comprehen-
sive solar image dataset specifically designed for research
purposes. This dataset would provide a valuable resource for



Figure 4: Flare Prediction Results. (Left) HMI magnetogram (HMIB) showing predicted MX class flare region. (Right)
Corresponding AIA-131 image showing the flare. Timeline is 2022-01-16 00:00:00.

the scientific community, enabling more extensive and varied
training of predictive models. Moreover, expanding our re-
search with a richer magnetogram dataset could enhance the
model’s capability to capture the critical moments leading up
to a flare. By focusing on the magnetogram data just before
flare onset, we could develop models that not only predict the
occurrence of solar flares but also provide more precise fore-
casts of the intense sunspot eruptions immediately preceding
these events.

6 Conclusion
In this study, we proposed a novel approach for predicting
extreme solar flares using HMI intensitygrams and magne-
tograms. By detecting sunspots from intensitygrams and ex-
tracting corresponding magnetic field patches from magne-
tograms, we trained a Residual Network (ResNet) to classify
these flares with high accuracy. Our experimental results
demonstrated that HMI magnetograms provide superior data
for deep learning models compared to other SDO AIA im-
ages, due to their ability to capture critical magnetic field
features necessary for accurate flare prediction. Our research
underscores the importance of magnetic field data in fore-
casting solar flare magnitudes. This advancement in solar
activity prediction has practical implications for mitigating
the impacts of space weather.
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